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Abstract. We introduce aDLA model with two species in order to simulate the growth of
alternate clusters. We perform intensive numerical simulations in two dimensions in which the
proportions of the two species are varied. A critical point, analogous to a percolation threshold,
is found and a new class of critical exponents is obtained for this transition. Within numerical
accuracy, the fractal dimension of the clusters is found to be the same as in the usualDLA

model, independent of the species concentrations. Possible connections with the growth of
two-dimensional ionic crystals are discussed.

1. Introduction

The diffusion-limited aggregation (DLA) model originally introduced by Witten and
Sander [1, 2] provides a unified description for a broad class of chemico-physical
phenomena [3]. In the present paper, we introduce a similar model for the diffusion-limited
aggregation of two species,A andB, with the imposed alternate condensation orderA–B–
A–B–A–B–. . . . This type of order governs the atomic or molecular structure of numerous
materials, such as ionic crystals and certain binary alloys or gels.

In this paper, particular attention is devoted to the influence of the relative proportions,
p and 1–p, of the two species,A andB, which are varied in the numerical simulations. A
cluster is the result of two mechanisms: diffusion and chemical aggregation. The second
mechanism makes the system close to theA–B percolation problem which is known to
behave like regular percolation [4]. So, aDLA-like fractality and a percolation-like criticality
mingle in this model.

The paper is organized as follows. The model is briefly described in section 2. In
section 3, the results forp = 1

2 are discussed, numerical evidence for the existence of a
critical point,p = pc, are given and the subcritical regime,p < pc, is studied. Concluding
remarks are finally presented in section 4.

2. Model

The model is defined on a square lattice whose sites are represented by pairs(x, y) of
integer coordinates. The origin(0, 0) is placed at the centre of the lattice. Initially, all
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the lattice sites are empty, except for(0, 0) and (1, 0) which are occupied by anA and
a B particle, respectively. This two-particle cluster starts to grow by the addition of new
incoming particles.

A regular DLA algorithm [3] is used and no difference is made for the diffusion of an
A or a B particle. The motion of a free particle is controlled by two fictitious circles: they
are defined before each launching, centred at (0, 0), with radiusR1 andR2 (R1 < R2). We
setR1 = Rmax + 5, whereRmax is the maximum radius corresponding to the outermost tip
of the cluster andR2 = 10R1. When the particle reaches the perimeter of the largest circle,
it is removed and launched again, from a randomly chosen point on the perimeter of the
smaller circle. This method simulates the motion of a particle which diffuses far from the
aggregate and returns close to it after a long time has elapsed.

To generate alternate clusters, a diffusingA(B) particle is added to the cluster (i.e.
crystallizes) only when it comes into contact with a previously crystallizedB(A) particle.
Conversely, if anA(B) diffusing particle reaches anA(B) crystallized particle, it does not
crystallize and keeps diffusing.

Each time a particle is added to the cluster, the next particle to crystallize is randomly
chosen to be either anA particle with probabilityp or a B particle with probability 1− p.
This particle diffuses until it crystallizes. For very lowp values, we expect that the cluster
rapidly saturates, with aB layer around it. If aB ion is chosen to be added next, it will
never be able to crystallize and diffusion will go on forever. To overcome this difficulty, we
had to limit the numberα of attempts a given particle makes to crystallize to a maximum
valueαmax. For aN -particle cluster,αmax was chosen to be of the order ofN , since most of
the particles belong to the perimeter and we want to explore the growth-site set. Test runs
with αmax = max(5N, 100) andαmax = max(N, 100) gave very similar results so that the
second limit was retained in the simulations. Whenα reachedαmax, growth was stopped
and the corresponding cluster was stored in a list of finite clusters.

Let us note that, on average, a particle encounters the cluster several times before
sticking. Thus, our algorithm falls in the class ofDLA with a sticking probability smaller
than one [2] but this probability is not a constant in our case. This algorithm is of the order
of N2, whereas a regularDLA algorithm is of the order ofN . For this reason, the maximum
cluster massN is set to a modest value,Nmax = 8192 (or less), in the simulations. The
clusters that stop growing before reachingNmax are called closed clusters and the others are
called open clusters. Since the present model is by definition symmetrical aboutp = 1

2, we
will assume thatp 6 1

2 in the following.

3. Numerical results

For p = 1
2. We first investigated the case of an equal proportion ofA andB particles. We

constructed a fairly large number (2× 105) of small clusters (Nmax = 256). We found that
the fractionF(N) of clusters with a mass larger thanN decreases exponentially and rapidly
saturates to a constant value (figure 1). This result shows that about 75% of the clusters
will grow indefinitely in this case.

To compute the fractal dimension of the open clusters, we constructed 1000 open clusters
of massN = 8192 (see figure 2) and used the sandbox method. Figure 3 is a log–log plot
of the massN as a function of the radiusR. The data points forR < 100 correspond to
the so-called frozen zone of the cluster, where growth is almost fully completed. A linear
fit to the data points in this range givesD = 1.67± 0.01, a value very similar to that found
for regularDLA [5]. Above R = 100, the curve bends, since the data concern the active
zone where growth is still important.
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Figure 1. The variations of the proportion
F of clusters with a mass greater thanN

at p = 1
2 . The full curve is a fit of the

data points (open circles) to a curve of the
equation y = α + β exp(−γ xδ), giving
α ' 0.75.

Figure 2. An 8192-particle open cluster grown at
p = 1

2 .

Figure 3. N versusR for the open clusters
constructed atp = 1

2 . The full line is a
linear fit of the data points and its slope is
equal toD = 1.67± 0.01.
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Figure 4. P plotted as a function
of N (top and right axes) and as
a function ofN + 8 (bottom and
left axes) atp = 0.293 (N > 5).
The finite-size effects are notably
lowered in the second case.

For p 6 pc. We have just seen that forp = 1
2 the probability for a cluster to remain open

forever is non-zero. Now, the probability that a cluster reaches a given massN (N > 5)
obviously vanishes asp → 0. We thus expect that there exists a critical probabilitypc

which delimits a finite cluster growth regime (forp < pc) and an infinite cluster growth
regime (forp > pc). The former regime is studied in this paragraph. The transition which
occurs atp = pc is somewhat reminiscent of percolation and will be analysed in close
analogy with this well known model [6]. In particular, we will adapt here an analysis made
in the context of tricolour percolation [7].

In order to determine the nature of the transition, the cluster mass distribution was
computed for differentp values. LetP(N) be the probability to construct a cluster of
massN : it is simply defined as the number ofN -particle clusters divided by the total
number of clusters constructed. A characteristic cluster mass,N∗, is easily deduced from
P(N), as explained below.N∗ increases continuously asp increases from zero and it
diverges at the critical probabilityp = pc, where

P(N) ∼ N1−τ (1 + A/N) . (1)

The A/N factor has been introduced to account for the finite-size corrections which are
observed (figure 4).

Whenp < pc, self-similarity is present up to a length scaleξ ∼ N∗1/D, whereD is the
fractal dimension. Then,P(N) is given by

P(N) = N1−τ (1 + A/N)f (X) (2)

where X is the reduced variableN/N∗ and f (X) is a monotonic scaling function which
tends towards a finite value whenX → 0 and to zero whenX → ∞, in order thatP(N)

remains finite.
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Figure 5. Evolution of F(N) near the critical pointpc.

The cumulated probabilityF is defined as

F(N) =
∫ ∞

N

P (N ′) dN ′ . (3)

At p = pc, the asymptotic behaviour ofF should thus be

F(N) ∼ N2−τ . (4)

Whenp departs frompc, according to (2) and (3),F(N) will deviate from the simple power
law given in (4), in the rangeN > N∗. More precisely,F(N) must fall off exponentially
whenp < pc and asymptote to a non-zero constant forp > pc. Figure 5 is a log–log plot
of F as a function ofN , for p = 0.291, 0.292, 0.293 and 0.294. The data points have
been obtained by constructing 30 000 clusters with a cut-off massNmax = 8192 for eachp
value. The best linear fit, obtained forp = 0.293, extends over two decades, which is a
good criterion to determinepc accurately. Our final estimate for the critical point is thus
pc = 0.293± 0.001. The slope of the curve forp = 0.293 gives

τ = 2.92± 0.06 (5)

the error bar being due mainly to the error onpc.
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Figure 6. (M2/M1) plotted as a function
of (pc − p). The full line is a linear fit
of the data points. The slope is equal to
−1.40± 0.09.

A direct plot of logP as a function of logN is curved on a rather wide range of small
N values (figure 4). This curvature is due to the finite-size effects which are represented by
the corrective termA/N in (1). It is easy to show that (1) is approximately equivalent to
P(N) ∼ (N + N0)

1−τ , a form which is easier to use in practice. We variedN0 and found
that the best choice isN0 = 8, in order to bring the data points forN > 5 on a straight line
(figure 4). The curve is now linear over about three decades, with a slope 1− τ = −1.89,
a result which is consistent with the above estimate forτ .

Next, we turned to the behaviour of the characteristic cluster massN∗ in the range
p < pc. We constructed 105 clusters for each of the six following values ofp: 0.273,
0.276, 0.278, 0.280, 0.281, 0.282. All the clusters constructed are closed, so that the mass
distribution is not biased by the cut-offNmax.

To computeN∗, we first define the two moments

M1(p) =
∫ ∞

Ns

N ′P(N ′) dN ′ (6)

and

M2(p) =
∫ ∞

Ns

N ′ 2P(N ′) dN ′ (7)

whereNs = 5 is the mass of the smallest clusters. Using equation (2), the integration of
these expressions gives

M1(p) ' K1 + K ′
1N

∗(3−τ) (8)

and

M2(p) ' K2N
∗(3−τ) + K ′

2N
∗(4−τ) . (9)

Sufficiently close topc, we haveN∗ → ∞, so that

N∗(p) ' M2(p)/M1(p) . (10)

In analogy with percolation theory, we expect that

N∗(p) ∼ (pc − p)−1/σ (11)

when p → p−
c . Figure 6 is a plot ofM2/M1 as a function ofpc − p, on logarithmic

scales. In order to take into account the inaccuracy onpc, a linear fit was performed for
pc = 0.292, 0.293 and 0.294 and we obtained

σ = 0.71± 0.10. (12)

As a consistency check, the scaling functionf (X) defined in (2) was plotted in figure 7. The
x andy coordinates representN/(M2/M1) ' X and(N+8)τ−1P(N) ' f (X), respectively.
The good collapse of the data points gives additional support to the results obtained so far.
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Figure 7. The scaling functionf (X)

deduced fromP(N) for N > 5. The p

values corresponding to the different sets
of data points are given in the picture
frame.

Figure 8. N versusRg atp = pc = 0.293.
The full line is a linear fit of the data
points.

Lastly, we looked at the influence of the critical point on the fractal dimension of the
clusters. Figure 8 is a log–log plot of the cluster massN as a function of the mean radius
of gyrationRg. The data are extracted from 30 000 clusters constructed atp = pc = 0.293.
We obtain quite a linear curve, with a slope

D = 1.725± 0.003. (13)

This value is comparable to the estimateD = 1.67± 0.01 found with a different method at
p = 0.5. Sinceξ ∼ (pc − p)−ν ∼ N∗1/D, equation (11) gives

ν = 1/(σD) = 0.81± 0.20 (14)

for the critical exponentν of the correlation lengthξ . The set of critical exponents obtained
(equations (5), (12) and (14)) defines a new universality class.
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Figure 9. N plotted as a function ofRg

for different p values given in the picture
frame. Clearly, the whole set of data points
falls on a single line.

The N versusRg plots for the closed clusters obtained for all thep values considered
are displayed in figure 9. This figure confirms that not onlyD, but alsoRg does not
depend onp for the clusters of sizeRg < ξ . This result is consistent with the picture of
a percolation-like transition atpc = 0.293. However, in the percolation model, the infinite
cluster is known to become compact abovepc. In the present model, we have seen that the
open clusters obtained atp = 0.5 are fractal, with a fractal dimension which is that ofDLA.
This non-trivial result shows that the tip effects due to the diffusion dominate the chemical
effects due to the nature of the ions. In other words, the self-organized fractal geometry of
the DLA model is robust enough not to be affected by the static percolation-like transition
driven by thep field.

4. Summary and discussion

In summary, we have studied aDLA model with two species,A andB, for which anA–B

growth order is imposed. Intensive numerical simulations were performed with various
proportionsp of A particles. Forp = 1

2, we observed that about 75% of the clusters grow
indefinitely. This percentage decreases withp and becomes zero when a critical value
pc = 0.293± 0.01, similar to a percolation threshold, is reached. In the vicinity of this
point, a scaling analysis of our numerical data allowed us to compute the critical exponents
τ = 2.92± 0.06, σ = 0.71± 0.10 andν = 0.81± 0.20. These exponents define a so-far
unknown type of critical behaviour. The cluster fractal dimension was found to be the same
as in regularDLA, independently ofp. This result shows thatp governs the mean size of
the clusters but that it does not govern their geometry.

Recent experiments have revealed the possibility of growing two-dimensional (2D)
irregular crystals of ammonium chloride (NH4Cl) [8]. The observed growth mechanism
(tip-splitting), the measured fractal dimension (D ' 1.67) and a multifractal analysis [9] all
suggest that these crystals are similar toDLA clusters. Although this observation gives more
insight into the physical problem, its exact relation with theDLA model remains unclear. As
a matter of fact,DLA simulates the case of rapid growth with both vanishing supersaturation
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and surface tension. Thus, our model simulates ionic crystal growth in the same limits and
the geometry of the NH4Cl crystals is qualitatively well reproduced (see figure 2).

However, the experiments are performed with a non-zero supersaturation and surface
tension effects play a significant role. Saito and Ueta [10] have performed numerical
simulations that take these parameters into account. In order to obtain a reasonably realistic
model for the above experiments, their approach could be extended to the case of two ionic
species. Another possibility would be to adapt a sophisticated solidification model which has
been introduced recently [11] to the case of ionic crystal growth. According to this model,
a fractal seaweed geometry could be observed, with possibly a fractal dimension different
from the DLA value [12]. Nevertheless, there is little hope of discriminating between the
two fractal dimensions, at the moment.

In both cases,DLA or fractal seaweed, based on our present results, we would expect
that there exists a critical value,p = pc, limiting a fast growth and a slow growth regime.
It would thus be interesting to test this point experimentally by growing NH4Cl crystals
from solutions with different NH+4 and Cl− concentrations.
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